數學模型
用數學語言描述的一類模型。數學模型可以是一個或一組代數方程、微分方程、差分方程、積分方程或統計學方程,也可以是它們的某種適當的組合,通過這些方程定量地或定性地描述系統各變量之間的相互關系或因果關系。除了用方程描述的數學模型外,還有用其他數學工具,如代數、幾何、拓撲、數理邏輯等描述的模型。需要指出的是,數學模型描述的是系統的行為和特征而不是系統的實際結構。
數學模型是運用數理邏輯方法和數學語言建構的科學或工程模型。
數學模型的歷史可以追溯到人類開始使用數字的時代。隨著人類使用數字,就不斷地建立各種數學模型,以解決各種各樣的實際問題。對于廣大的科學技術工作者對大學生的綜合素質測評,對教師的工作業績的評定以及諸如訪友,采購等日常活動,都可以建立一個數學模型,確立一個方案。建立數學模型是溝通擺在面前的實際問題與數學工具之間聯系的一座必不可少的橋梁。
用字母、數字和其他數學符號構成的等式或不等式,或用圖表、圖像、框圖、數理邏輯等來描述系統的特征及其內部聯系或與外界聯系的模型。它是真實系統的一種抽象。數學模型是研究和掌握系統運動規律的有力工具,它是分析、設計、預報或預測、控制實際系統的基礎。數學模型的種類很多,而且有多種不同的分類方法。
靜態和動態模型
靜態模型是指要描述的系統各量之間的關系是不隨時間的變化而變化的,一般都用代數方程來表達。動態模型是指描述系統各量之間隨時間變化而變化的規律的數學表達式,一般用微分方程或差分方程來表示。經典控制理論中常用的系統的傳遞函數也是動態模型,因為它是從描述系統的微分方程變換而來的(見拉普拉斯變換)。
線性和非線性模型
線性模型中各量之間的關系是線性的,可以應用疊加原理,即幾個不同的輸入量同時作用于系統的響應,等于幾個輸入量單獨作用的響應之和。線性模型簡單,應用廣泛。非線性模型中各量之間的關系不是線性的,不滿足疊加原理。在允許的情況下,非線性模型往往可以線性化為線性模型,方法是把非線性模型在工作點鄰域內展成泰勒級數,保留一階項,略去高階項,就可得到近似的線性模型。
